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Goals %Pppl

e We are using M3D-C! to calculate axisymmetric toroidal steady-states of a compre-

hensive two-fluid model.

e These steady-states are steady on all timescales and are the self-consistent solutions

including two-fluid MHD, gyroviscosity, flow, and anisotropic transport.

e In particular, we would like to understand the effects of two-fluid terms and gyrovis-

cosity on the steady-states.

e These steady-states may be used as accurate equilibria for three-dimensional stability

studies.
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Physical Model %
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Method %

e The simulation is initialized with a solution to the Grad-Shafranov equation.

e A loop voltage is applied by changing the flux at the boundary of the simulation

domain at a constant rate ¢ = V; /27

e A localized density source in included to offset diffusive flux out of the simulation

domain.

e The simulation is run until a steady state in all hydrodynamic quantities is reached.

3/2

e The resistivity is proportional to 17" °/<. The vacuum region is simply a low tempera-

ture region outside the separatrix.

e Viscosity smoothly becomes vary large at the boundary to damp flows in the vacuum

region.



=PPPL

PRINCETON PLASMA
PHYSICS LABORATORY

Difficulties in Low Aspect-Ratio Simulations

e Nonlinear numerical instabilities (NNI) occur when there exist flows, highly anisotropic

heat flux, and ohmic heating in a high-S core.

— This is solved by re-calculating the resistivity after the pressure advance, then

re-doing the pressure advance.
e Initial transient dynamics lead to rapid transient flows and lead to NNI.

— This is solved by initially using a large viscosity, and ramping it down while ap-

proaching steady-state.
e Large flows near the boundary lead to NNI (especially in NSTX simulations).
— This is solved by keeping the viscosity large near the boundary:.

e Profiles with sharp gradients in resistivity near the LCES never reach steady state.

— Not yet solved...
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Field /n Iteration

e Some problems when simulation includes all of: low n, fast temperature convection,

strongly anisotropic heat flux, and ohmic heating.
— ot-scale oscillations; T" may go negative in core.

e Can be mitigated by increasing spatial resolution, but not by decreasing time step

e Or, solve v ptl (B, p)"* ot (B, p)" .
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Low-S Case %Pppl

e The “low-S” cases were run with the following parameters:

Sy~ 300, S.~10, (B)~20%, Re~ 10°
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Low-S Case: Toroidal velocity %Bﬁb‘:ﬁfﬂ:&‘:ﬁ#‘.}ﬁv

e Flows are extremely strong (~ 100 km/s)

e Two-fluid/gyroviscous effects do not make much difference in this case
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Low-S Case: Poloidal velocity %Sﬁb‘:ﬁfﬂ:&‘:ﬁ#‘.}ﬁv
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e Poloidal flows in core ~ 5 x 107™% v4.
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Comparison with Theory

o A steady-state satisfying Vp = J x B to lowest order will have:
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Comparison with Aydemir (6] %:::,",:s;::.;‘::m:v

v,(t = 3500 T,)

e Our results agree with Aydemir’s observations

that:
— Toroidal flows are greatest near the x-points,
reaching ~ 10 km/s.

— Flipping the sign of B, flips the sign of the

toroidal velocity, but not poloidal velocity:.

— Total viscous torque oppositely directed to

toroidal flow at the divertor x-point.

e These facts do not change at high 3.

e Bootstrap current is not necessary to achieve these flows.
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Poloidal Dependence

e T and RB, are good flux quantities; n is not.
e p has essentially the same poloidal dependence as n.

e The parallel velocity (®) and angular momentum (€2) functions of Guazzotto et al. [7]

are not found to be approximately constant on flux surfaces.
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High-S Case: No Steady State (yet)

e The “high-S” cases were run with the following parameters:

Sy~ 10°, S, ~10%, By~ 13%, Re~ 10°
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High-S Case: Toroidal Velocity %Bﬁb‘iﬁfﬂ:&‘:ﬂ‘:ﬁv
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Stability SHEEE:
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Conclusions

e We have been able to obtain self-consistent steady-states of the extended-MHD equa-

tions for realistic plasma configurations with free boundaries.

e The flows observed in the steady-states are in relatively good agreement with Pfirsch-

Schliiter theory.
e Gyroviscosity leads to parallel flows in the core.

e The strong flows near the x-points observed by Aydemir dominate in low-S case, but

two-fluid effects and gyroviscosity dominate in high-S case.
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Future Work

e To get to steady-state with both realistic resistivity and viscosity using this method
will require more work (more spatial resolution? different time step?). There is no

guarantee that a steady state exists.
e We need better modeling of edge/SOL quantities for realistic simulations.

— Density sink; realistic boundary shapes

— Pedestal modeling for H-mode
e Need some model for neoclassical parallel viscosity:.
e Coupling to realistic transport models

e We are moving forward with linear 3D capability; thinking about nonlinear 3D capa-

bility.
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